Image from Google Jackets

PEM Fuel Cells : Fundamentals, Advanced Technologies, and Practical Application / edited by Gurbinder Kaur.

Contributor(s): Material type: TextTextLanguage: İngilizce Publisher: San Diego : Elsevier, 2021Copyright date: ©2022Description: 1 online resource (584 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780128237090
Subject(s): Genre/Form: LOC classification:
  • TK2933.P76 P46 2022
Online resources:
Contents:
Front Cover -- PEM Fuel Cells -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editor -- Foreword -- Acknowledgments -- 1 Proton exchange membrane fuel cells: fundamentals, advanced technologies, and practical applications -- 1.1 Introduction -- 1.2 Proton exchange membrane fuel cells -- 1.3 Components of PEM fuel cells -- 1.3.1 Membrane -- 1.3.2 Anode and cathode electrodes -- 1.3.3 Bipolar plates -- 1.3.4 Other components -- 1.4 Practical applications of PEM fuel cells -- 1.4.1 Portable power systems -- 1.4.2 Transportation -- 1.5 Summary -- References -- 2 Proton exchange membrane for microbial fuel cells -- 2.1 Biofuel cells -- 2.2 Microbial fuel cell -- 2.3 Types of ion exchange membrane in microbial fuel cell -- 2.3.1 Anion exchange membrane -- 2.3.2 Bipolar membrane -- 2.3.3 Cation exchange membrane -- 2.4 Essential cation exchange membrane properties and its determination -- 2.4.1 Water uptake -- 2.4.2 Proton conductivity -- 2.4.3 Extra ion transport -- 2.4.4 Ion exchange capacity -- 2.4.5 pH splitting -- 2.4.6 Oxygen intrusion -- 2.4.7 Internal resistance -- 2.4.8 Substrate crossover and biofouling -- 2.5 Polymeric membranes -- 2.5.1 Polymer-polymer composites -- 2.5.2 Metal-based nanopolymer composites -- 2.5.3 Carbon-polymer composites -- 2.6 Salt bridge -- 2.7 Ceramic membranes -- 2.8 Membrane-less microbial fuel cell -- 2.9 Conclusion -- References -- 3 Electrocatalysts: selectivity and utilization -- 3.1 Introduction -- 3.1.1 Electrocatalyst and its uses -- 3.1.2 Types of electrocatalysts -- 3.1.3 Selectivity and utilization -- 3.2 Optimization parameters -- 3.2.1 Shape modification -- 3.2.2 Facet arrangement -- 3.2.3 Ionomer/catalyst interaction -- 3.3 Summary -- References -- 4 Bipolar plates for the permeable exchange membrane: carbon nanotubes as an alternative -- 4.1 Introduction.
4.2 Polymer electrolyte membrane fuel cells -- 4.3 Carbon nanotubes -- 4.4 Researches on permeable exchange membrane fuel cells and carbon nanotubes -- 4.5 Discussion -- 4.6 Other applications -- 4.7 Conclusion -- Acknowledgments -- References -- 5 Gas diffusion layer for proton exchange membrane fuel cells -- 5.1 Introduction -- 5.2 Gas diffusion layer materials -- 5.3 Gas diffusion layer properties -- 5.3.1 Overview -- 5.3.2 Structural properties -- 5.3.2.1 Porosity -- 5.3.2.2 Thickness -- 5.3.2.3 Pore size distribution -- 5.3.3 Transport properties -- 5.3.3.1 Diffusivity -- 5.3.3.2 Permeability -- 5.3.3.3 Wettability -- 5.3.3.4 Thermal properties -- 5.3.3.5 Electrical properties -- 5.3.4 Gas diffusion layer compressibility -- 5.4 Modifications of gas diffusion layers -- 5.4.1 Hydrophobization -- 5.4.2 Microporous layer application on gas diffusion layer substrate -- 5.4.2.1 Effect of microporous layer properties on proton exchange membrane fuel cell performance -- 5.4.3 Structural modifications -- 5.5 Durability of gas diffusion layer -- 5.6 Summary -- References -- 6 Thermodynamics and operating conditions for proton exchange membrane fuel cells -- 6.1 Introduction -- 6.2 Hydrogen higher and lower heating value -- 6.3 Thermodynamics of fuel cells -- 6.4 First law analysis -- 6.5 Second law analysis -- 6.6 Effect of cell conditions of reversible voltage -- 6.6.1 Effect of temperature on reversible voltage -- 6.6.2 Effect of pressure on reversible voltage -- 6.6.3 Effect of reactant concentration on reversible -- 6.7 Efficiency of fuel cells -- 6.7.1 First law efficiency -- 6.7.2 Real fuel cell efficiency -- 6.8 Chapter summary -- References -- 7 Proton exchange membrane testing and diagnostics -- 7.1 General overview -- 7.2 Testing of proton exchange membrane fuel cell -- 7.2.1 Pretesting procedures -- 7.2.1.1 Validation of cell assembly.
7.2.1.2 Preparation of the cell -- 7.2.1.2.1 Break-in/start-up -- 7.2.1.2.2 Conditioning -- 7.2.2 Testing techniques and standard protocols -- 7.2.2.1 Performance testing -- 7.2.2.2 Durability testing -- 7.2.3 Posttesting procedures -- 7.2.3.1 Noninvasive diagnostic procedures -- 7.2.3.2 Clean-up of the cell -- 7.2.3.3 Invasive diagnostic procedures -- 7.2.3.4 Verification of the assembly -- 7.2.3.5 Destructive postmortem -- 7.3 Diagnostic tools for proton exchange membrane fuel cell -- 7.3.1 Polarization curve -- 7.3.2 Cyclic voltammetry -- 7.3.3 Electrochemical impedance spectroscopy -- 7.3.4 Current mapping -- 7.3.5 Temperature mapping -- 7.3.6 Cathode discharge -- 7.4 Summary -- References -- 8 Charge and mass transport and modeling principles in proton-exchange membrane (PEM) fuel cells -- 8.1 Introduction -- 8.2 PEM thermodynamics and electrochemistry -- 8.2.1 Electrochemical reaction -- 8.2.2 Gibbs free energy and electrical work -- 8.2.3 Electrical potentials -- 8.2.3.1 Temperature effects -- 8.2.3.2 Pressure effects -- 8.2.3.2.1 Changes due to concentration -- 8.2.4 Tafel equation -- 8.3 Charge and mass transport in membrane-electrode-assembly -- 8.3.1 Charge transport -- 8.3.1.1 Charge flux -- 8.3.1.2 Fuel cell charge transport resistance and voltage losses -- 8.3.1.3 Conductivity -- 8.3.2 Mass transport -- 8.3.2.1 Diffusion -- 8.3.2.2 Advection mass transport -- 8.4 Modeling mass transport in a fuel cell -- 8.4.1 Mathematical models -- 8.4.2 Modeling voltage -- 8.4.3 Numerical solution -- 8.4.3.1 Computational fluid dynamics -- 8.4.3.2 Lattice Boltzmann methods -- 8.5 Closing remarks -- References -- 9 Degradation and failure modes in proton exchange membrane fuel cells -- 9.1 Introduction -- 9.2 Failure modes and degradation -- 9.2.1 Membrane degradation -- 9.2.1.1 Chemical/electrochemical degradation of proton exchange membrane.
9.2.2 Mechanical degradation of proton exchange membrane -- 9.2.2.1 Thermal degradation of proton exchange membrane -- 9.2.3 Catalyst degradation -- 9.2.3.1 Pt degradation -- 9.2.3.2 Carbon corrosion -- 9.2.3.3 Ionomer decomposition -- 9.2.4 Degradation of gas diffusion layers -- 9.2.4.1 Chemical degradation of gas diffusion layers -- 9.2.4.2 Mechanical degradation of gas diffusion layers -- 9.2.5 Degradation of bipolar plates -- 9.2.6 Degradation of other components -- 9.3 Stressors in proton exchange membrane fuel cells -- 9.3.1 Open-circuit voltage -- 9.3.2 Start/stop cycling -- 9.3.3 Thermal cycling and freeze/thaw cycling -- 9.3.4 Reactant starvation -- 9.3.5 Fuel impurities -- 9.3.5.1 COx poisoning -- 9.3.5.2 Sulfur poisoning -- 9.3.5.3 Other impurities -- References -- 10 High-temperature proton exchange membrane-an insight -- 10.1 Introduction -- 10.2 HT-PEMFC materials -- 10.2.1 Membrane -- 10.2.2 Catalyst and catalyst layer -- 10.2.3 Bipolar plates -- 10.3 HT-PEMFC stacks and systems -- 10.4 Durability in HT-PEMFC -- 10.5 Degradation mechanisms: materials -- 10.6 Applications of HT-PEMFC -- 10.7 Conclusion -- Acknowledgments -- References -- 11 Advanced modifications in nonnoble materials for proton exchange membrane -- 11.1 Introduction -- 11.2 Role of noble meatal (Pt) catalyst -- 11.3 Alternatives to pure platinum -- 11.3.1 Advances in nonnoble supported Pt catalyst -- 11.3.2 Ordered Pt-noble metal (Pt-M) alloys/metal alloying -- 11.4 Features of nonnoble materials for proton exchange membrane fuel cells -- 11.5 Nonnoble materials for proton exchange membrane fuel cells -- 11.5.1 Transition metal carbides as oxygen reduction reaction catalyst/support -- 11.5.1.1 Advances and modifications in transition metal carbides -- 11.5.2 Modifications in Pt-free nonnoble materials.
11.5.3 Advances in nonnoble M-N-C catalysts in the form of metal organic framework precursors -- 11.6 Conclusion -- 11.7 Future perspective -- References -- 12 Technological risks and durability issues for the Proton Exchange Membrane Fuel Cell technology -- 12.1 Introduction -- 12.2 Working of proton exchange membrane fuel cells -- 12.3 Major challenges in proton exchange membrane fuel cells -- 12.4 Sluggish oxygen reduction reaction kinetics -- 12.5 Effect of electrocatalysts and carbon support materials -- 12.6 Durability issues and deterioration mechanism -- 12.6.1 Study on start-up/shut-down cycling -- 12.6.2 Reversal current decay mechanism -- 12.6.3 Fuel starvation -- 12.6.4 Mechanism of carbon corrosion -- 12.6.5 Catalyst dissolution and Ostwald ripening -- 12.6.6 Role of catalyst size in catalyst loss -- 12.6.7 Catalyst detachment/agglomeration -- 12.7 Conclusions -- Acknowledgments -- References -- Further reading -- 13 Porous media flow field for proton exchange membrane fuel cells -- 13.1 Introduction -- 13.2 Structure of porous media flow field -- 13.2.1 Foam material -- 13.2.2 3D fine mesh -- 13.2.3 Others -- 13.3 Material property of porous media flow field -- 13.3.1 Structure reconstruction -- 13.3.2 Permeability and pressure drop -- 13.3.3 Heat transfer -- 13.3.4 Two-phase flow -- 13.3.4.1 Volume-of-fluid model -- 13.3.4.2 Mixture (M2) and two-fluid model -- 13.4 Porous media flow field performance -- 13.4.1 Experiment -- 13.4.2 Simulation -- 13.4.2.1 Foam flow filed -- 13.4.2.2 3D fine mesh flow filed -- 13.4.3 Data-driven surrogate model -- 13.5 Summary -- References -- 14 Automotive applications of PEM technology -- 14.1 Fuel cells (FCs) in transportation applications -- 14.1.1 Transportation application -- 14.1.1.1 Cars -- 14.1.1.2 Buses -- 14.1.1.3 Trucks -- 14.1.1.4 Forklifts -- 14.1.1.5 Train and trams.
14.1.1.6 Underwater vehicles.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Status Notes Date due Barcode
E-Book E-Book Merkez Kütüphane Merkez Kütüphane E-Kitap Koleksiyonu TK2933.P76 P46 2022EBK (Browse shelf(Opens below)) Geçerli değil-e-Kitap / Not applicable-e-Book EBK01177

Includes bibliographical references and index.

Front Cover -- PEM Fuel Cells -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editor -- Foreword -- Acknowledgments -- 1 Proton exchange membrane fuel cells: fundamentals, advanced technologies, and practical applications -- 1.1 Introduction -- 1.2 Proton exchange membrane fuel cells -- 1.3 Components of PEM fuel cells -- 1.3.1 Membrane -- 1.3.2 Anode and cathode electrodes -- 1.3.3 Bipolar plates -- 1.3.4 Other components -- 1.4 Practical applications of PEM fuel cells -- 1.4.1 Portable power systems -- 1.4.2 Transportation -- 1.5 Summary -- References -- 2 Proton exchange membrane for microbial fuel cells -- 2.1 Biofuel cells -- 2.2 Microbial fuel cell -- 2.3 Types of ion exchange membrane in microbial fuel cell -- 2.3.1 Anion exchange membrane -- 2.3.2 Bipolar membrane -- 2.3.3 Cation exchange membrane -- 2.4 Essential cation exchange membrane properties and its determination -- 2.4.1 Water uptake -- 2.4.2 Proton conductivity -- 2.4.3 Extra ion transport -- 2.4.4 Ion exchange capacity -- 2.4.5 pH splitting -- 2.4.6 Oxygen intrusion -- 2.4.7 Internal resistance -- 2.4.8 Substrate crossover and biofouling -- 2.5 Polymeric membranes -- 2.5.1 Polymer-polymer composites -- 2.5.2 Metal-based nanopolymer composites -- 2.5.3 Carbon-polymer composites -- 2.6 Salt bridge -- 2.7 Ceramic membranes -- 2.8 Membrane-less microbial fuel cell -- 2.9 Conclusion -- References -- 3 Electrocatalysts: selectivity and utilization -- 3.1 Introduction -- 3.1.1 Electrocatalyst and its uses -- 3.1.2 Types of electrocatalysts -- 3.1.3 Selectivity and utilization -- 3.2 Optimization parameters -- 3.2.1 Shape modification -- 3.2.2 Facet arrangement -- 3.2.3 Ionomer/catalyst interaction -- 3.3 Summary -- References -- 4 Bipolar plates for the permeable exchange membrane: carbon nanotubes as an alternative -- 4.1 Introduction.

4.2 Polymer electrolyte membrane fuel cells -- 4.3 Carbon nanotubes -- 4.4 Researches on permeable exchange membrane fuel cells and carbon nanotubes -- 4.5 Discussion -- 4.6 Other applications -- 4.7 Conclusion -- Acknowledgments -- References -- 5 Gas diffusion layer for proton exchange membrane fuel cells -- 5.1 Introduction -- 5.2 Gas diffusion layer materials -- 5.3 Gas diffusion layer properties -- 5.3.1 Overview -- 5.3.2 Structural properties -- 5.3.2.1 Porosity -- 5.3.2.2 Thickness -- 5.3.2.3 Pore size distribution -- 5.3.3 Transport properties -- 5.3.3.1 Diffusivity -- 5.3.3.2 Permeability -- 5.3.3.3 Wettability -- 5.3.3.4 Thermal properties -- 5.3.3.5 Electrical properties -- 5.3.4 Gas diffusion layer compressibility -- 5.4 Modifications of gas diffusion layers -- 5.4.1 Hydrophobization -- 5.4.2 Microporous layer application on gas diffusion layer substrate -- 5.4.2.1 Effect of microporous layer properties on proton exchange membrane fuel cell performance -- 5.4.3 Structural modifications -- 5.5 Durability of gas diffusion layer -- 5.6 Summary -- References -- 6 Thermodynamics and operating conditions for proton exchange membrane fuel cells -- 6.1 Introduction -- 6.2 Hydrogen higher and lower heating value -- 6.3 Thermodynamics of fuel cells -- 6.4 First law analysis -- 6.5 Second law analysis -- 6.6 Effect of cell conditions of reversible voltage -- 6.6.1 Effect of temperature on reversible voltage -- 6.6.2 Effect of pressure on reversible voltage -- 6.6.3 Effect of reactant concentration on reversible -- 6.7 Efficiency of fuel cells -- 6.7.1 First law efficiency -- 6.7.2 Real fuel cell efficiency -- 6.8 Chapter summary -- References -- 7 Proton exchange membrane testing and diagnostics -- 7.1 General overview -- 7.2 Testing of proton exchange membrane fuel cell -- 7.2.1 Pretesting procedures -- 7.2.1.1 Validation of cell assembly.

7.2.1.2 Preparation of the cell -- 7.2.1.2.1 Break-in/start-up -- 7.2.1.2.2 Conditioning -- 7.2.2 Testing techniques and standard protocols -- 7.2.2.1 Performance testing -- 7.2.2.2 Durability testing -- 7.2.3 Posttesting procedures -- 7.2.3.1 Noninvasive diagnostic procedures -- 7.2.3.2 Clean-up of the cell -- 7.2.3.3 Invasive diagnostic procedures -- 7.2.3.4 Verification of the assembly -- 7.2.3.5 Destructive postmortem -- 7.3 Diagnostic tools for proton exchange membrane fuel cell -- 7.3.1 Polarization curve -- 7.3.2 Cyclic voltammetry -- 7.3.3 Electrochemical impedance spectroscopy -- 7.3.4 Current mapping -- 7.3.5 Temperature mapping -- 7.3.6 Cathode discharge -- 7.4 Summary -- References -- 8 Charge and mass transport and modeling principles in proton-exchange membrane (PEM) fuel cells -- 8.1 Introduction -- 8.2 PEM thermodynamics and electrochemistry -- 8.2.1 Electrochemical reaction -- 8.2.2 Gibbs free energy and electrical work -- 8.2.3 Electrical potentials -- 8.2.3.1 Temperature effects -- 8.2.3.2 Pressure effects -- 8.2.3.2.1 Changes due to concentration -- 8.2.4 Tafel equation -- 8.3 Charge and mass transport in membrane-electrode-assembly -- 8.3.1 Charge transport -- 8.3.1.1 Charge flux -- 8.3.1.2 Fuel cell charge transport resistance and voltage losses -- 8.3.1.3 Conductivity -- 8.3.2 Mass transport -- 8.3.2.1 Diffusion -- 8.3.2.2 Advection mass transport -- 8.4 Modeling mass transport in a fuel cell -- 8.4.1 Mathematical models -- 8.4.2 Modeling voltage -- 8.4.3 Numerical solution -- 8.4.3.1 Computational fluid dynamics -- 8.4.3.2 Lattice Boltzmann methods -- 8.5 Closing remarks -- References -- 9 Degradation and failure modes in proton exchange membrane fuel cells -- 9.1 Introduction -- 9.2 Failure modes and degradation -- 9.2.1 Membrane degradation -- 9.2.1.1 Chemical/electrochemical degradation of proton exchange membrane.

9.2.2 Mechanical degradation of proton exchange membrane -- 9.2.2.1 Thermal degradation of proton exchange membrane -- 9.2.3 Catalyst degradation -- 9.2.3.1 Pt degradation -- 9.2.3.2 Carbon corrosion -- 9.2.3.3 Ionomer decomposition -- 9.2.4 Degradation of gas diffusion layers -- 9.2.4.1 Chemical degradation of gas diffusion layers -- 9.2.4.2 Mechanical degradation of gas diffusion layers -- 9.2.5 Degradation of bipolar plates -- 9.2.6 Degradation of other components -- 9.3 Stressors in proton exchange membrane fuel cells -- 9.3.1 Open-circuit voltage -- 9.3.2 Start/stop cycling -- 9.3.3 Thermal cycling and freeze/thaw cycling -- 9.3.4 Reactant starvation -- 9.3.5 Fuel impurities -- 9.3.5.1 COx poisoning -- 9.3.5.2 Sulfur poisoning -- 9.3.5.3 Other impurities -- References -- 10 High-temperature proton exchange membrane-an insight -- 10.1 Introduction -- 10.2 HT-PEMFC materials -- 10.2.1 Membrane -- 10.2.2 Catalyst and catalyst layer -- 10.2.3 Bipolar plates -- 10.3 HT-PEMFC stacks and systems -- 10.4 Durability in HT-PEMFC -- 10.5 Degradation mechanisms: materials -- 10.6 Applications of HT-PEMFC -- 10.7 Conclusion -- Acknowledgments -- References -- 11 Advanced modifications in nonnoble materials for proton exchange membrane -- 11.1 Introduction -- 11.2 Role of noble meatal (Pt) catalyst -- 11.3 Alternatives to pure platinum -- 11.3.1 Advances in nonnoble supported Pt catalyst -- 11.3.2 Ordered Pt-noble metal (Pt-M) alloys/metal alloying -- 11.4 Features of nonnoble materials for proton exchange membrane fuel cells -- 11.5 Nonnoble materials for proton exchange membrane fuel cells -- 11.5.1 Transition metal carbides as oxygen reduction reaction catalyst/support -- 11.5.1.1 Advances and modifications in transition metal carbides -- 11.5.2 Modifications in Pt-free nonnoble materials.

11.5.3 Advances in nonnoble M-N-C catalysts in the form of metal organic framework precursors -- 11.6 Conclusion -- 11.7 Future perspective -- References -- 12 Technological risks and durability issues for the Proton Exchange Membrane Fuel Cell technology -- 12.1 Introduction -- 12.2 Working of proton exchange membrane fuel cells -- 12.3 Major challenges in proton exchange membrane fuel cells -- 12.4 Sluggish oxygen reduction reaction kinetics -- 12.5 Effect of electrocatalysts and carbon support materials -- 12.6 Durability issues and deterioration mechanism -- 12.6.1 Study on start-up/shut-down cycling -- 12.6.2 Reversal current decay mechanism -- 12.6.3 Fuel starvation -- 12.6.4 Mechanism of carbon corrosion -- 12.6.5 Catalyst dissolution and Ostwald ripening -- 12.6.6 Role of catalyst size in catalyst loss -- 12.6.7 Catalyst detachment/agglomeration -- 12.7 Conclusions -- Acknowledgments -- References -- Further reading -- 13 Porous media flow field for proton exchange membrane fuel cells -- 13.1 Introduction -- 13.2 Structure of porous media flow field -- 13.2.1 Foam material -- 13.2.2 3D fine mesh -- 13.2.3 Others -- 13.3 Material property of porous media flow field -- 13.3.1 Structure reconstruction -- 13.3.2 Permeability and pressure drop -- 13.3.3 Heat transfer -- 13.3.4 Two-phase flow -- 13.3.4.1 Volume-of-fluid model -- 13.3.4.2 Mixture (M2) and two-fluid model -- 13.4 Porous media flow field performance -- 13.4.1 Experiment -- 13.4.2 Simulation -- 13.4.2.1 Foam flow filed -- 13.4.2.2 3D fine mesh flow filed -- 13.4.3 Data-driven surrogate model -- 13.5 Summary -- References -- 14 Automotive applications of PEM technology -- 14.1 Fuel cells (FCs) in transportation applications -- 14.1.1 Transportation application -- 14.1.1.1 Cars -- 14.1.1.2 Buses -- 14.1.1.3 Trucks -- 14.1.1.4 Forklifts -- 14.1.1.5 Train and trams.

14.1.1.6 Underwater vehicles.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.