Electrochemical Power Sources : Hydrogen Production by Water Electrolysis. edited by Tom Smolinka, Jurgen Garche

By: Smolinka, Tom
Contributor(s): Garche, J�urgen [editor] | Smolinka, Tom [editor] | Garche, J
Material type: TextTextLanguage: İngilizce Publisher: San Diego : Elsevier, 2021Copyright date: ©2022Description: 1 online resource (512 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780128194256Subject(s): Hydrogen as fuel | Electric power production from chemical action | Electric batteriesGenre/Form: Electronic books LOC classification: TP359.H8 | E443 2022Online resources: ScienceDirect Connect to resource
Contents:
Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - The importance of water electrolysis for our future energy system -- 1.1 Introduction -- 1.1.1 Chapter structure -- 1.1.2 Hydrogen and water electrolysis -- 1.1.3 Hydrogen production and use today -- 1.1.4 Does hydrogen have a color? -- 1.2 Motivation and key drivers for hydrogen in the future energy system -- 1.2.1 Historic interest in hydrogen: defossilization -- 1.2.2 The contemporary drive for hydrogen: decarbonization -- 1.2.2.1 The Paris agreement and the remaining CO 2 budget -- 1.2.2.2 Implications of "net zero" for the current energy system -- 1.2.2.3 The toolbox for building a net-zero energy system -- 1.2.3 Net zero versus defossilization versus 100% renewable energy supply -- 1.2.4 Regional drivers for hydrogen -- 1.3 Hydrogen in global energy future scenarios -- 1.3.1 Published energy scenarios with detail on hydrogen -- 1.3.2 Different net-zero strategies and what they mean for hydrogen -- 1.3.2.1 Selection of scenarios for detailed comparison -- 1.3.2.2 Overview and background of the selected scenarios -- 1.3.2.3 Characterization of net-zero strategies and implications for hydrogen -- 1.4 Water electrolysis in a net-zero future -- 1.4.1 Hydrogen by production pathway in net-zero scenarios -- 1.4.2 Required water electrolyzer capacity in net-zero scenarios -- 1.4.3 Are there limitations to solar and wind deployment? -- 1.4.4 Green versus blue hydrogen-renewable versus fossil energy -- 1.5 Summary and outlook to 2030 -- 1.5.1 Unprecedented drive for water electrolysis as a transition enabler -- 1.5.2 Best use of green hydrogen from early water electrolyzer projects -- 1.5.3 Deployment of water electrolysis in the 2030 timeframe -- 1.5.4 Green hydrogen as an accelerator of the energy transition.
Abbreviations, terminology, units and conversions -- -- References -- 2 - Fundamentals of water electrolysis -- 2.1 Introduction -- 2.1.1 Brief historical perspective -- 2.1.2 The machinery -- 2.2 The water electrolysis cell -- 2.2.1 Cell design -- 2.2.2 Role of electrolyte pH -- 2.2.3 Different electrolysis cells -- 2.3 Thermodynamics -- 2.3.1 Thermochemistry - ideality -- 2.3.1.1 Effect of operating temperature -- 2.3.1.2 Effect of operating pressure -- 2.3.2 Thermochemistry - non-ideality -- 2.3.2.1 Effect of water vapor -- 2.3.2.2 Nonideality due to pressure -- 2.3.3 Electrochemical thermodynamics -- 2.4 Non-equilibrium thermodynamics -- 2.4.1 Review of dissipation sources -- 2.4.2 The hydrogen evolution reaction (HER) -- 2.4.2.1 Acidic aqueous media -- 2.4.2.2 Alkaline media -- 2.4.2.3 Solid oxide -- 2.4.3 The oxygen evolution reaction (OER) -- 2.4.3.1 Acidic media -- 2.4.3.2 Alkaline media -- 2.4.3.3 Solid oxide -- 2.4.4 I-V curves -- 2.5 Cell efficiency -- 2.5.1 Energy efficiency -- 2.5.2 Process energy efficiency -- 2.5.3 Coulombic efficiency -- 2.6 Conclusions -- Glossary -- References -- 3 - Thermochemical hydrogen processes -- 3.1 Introduction -- 3.2 Metal oxide water splitting cycles -- 3.2.1 Generic metal-oxide cycle -- 3.2.2 Cerium oxide cycle -- 3.2.3 Nonstoichiometric perovskite-based solar thermochemical cycles -- 3.3 Copper-chlorine process -- 3.4 Sulfur-based process -- 3.4.1 Sulfur-iodine cycle -- 3.4.2 Hybrid sulfur cycle -- 3.5 Conclusions and outlook -- References -- 4 - The history of water electrolysis from its beginnings to the present -- 4.1 Introduction -- 4.2 First developments -- 4.2.1 Electrochemical fundamentals -- 4.2.2 Direct current generators -- 4.2.3 Drive principles -- 4.3 Preindustrial time up to about 1900 -- 4.3.1 Water electrolysis.
4.3.2 Chlor-alkali electrolysis -- 4.3.2.1 Diaphragm process -- 4.3.2.2 Mercury process -- 4.4 Alkaline water electrolysis in the 20th century -- 4.4.1 Industrial commercialization until 1950 -- 4.4.2 Large industrial deployment until 1980 -- 4.4.3 Advanced alkaline water electrolysis -- 4.5 History of polymer electrolyte membrane water electrolysis -- 4.5.1 Military and space application as early driver -- 4.5.2 Beyond niche applications -- 4.5.2.1 United States -- 4.5.2.2 Japan -- 4.5.2.3 Europe -- 4.6 History of high-temperature steam electrolysis -- 4.6.1 Pioneering high-temperature fuel cells -- 4.6.2 Progress in solid oxide electrolysis cells -- 4.7 Recent past with focus on new markets for renewables energies -- 4.7.1 Early German research projects since 1980 -- 4.7.2 Selected international research projects until the early 2000s -- References -- 5 - Alkaline electrolysis-status and prospects -- 5.1 Brief history of water electrolysis -- 5.2 Physical and chemical principles of electrolysis -- 5.2.1 Main technologies of water electrolysis -- 5.2.2 Efficiency of an electrolyzer -- 5.3 Principle of operation of an alkaline electrolyzer -- 5.4 Technical concepts of electrolysis-status and prospects -- 5.4.1 Key performance parameters -- 5.4.2 Technical concepts of alkaline electrolysis-past and today -- 5.5 Materials -- 5.5.1 Separators -- 5.5.2 Electrodes -- 5.5.3 Operating conditions -- 5.6 Degradation effects in alkaline electrolyzers -- 5.7 Anion exchange membrane water electrolysis -- 5.8 Description of technical plants -- 5.8.1 Components of an alkaline electrolysis plant -- 5.9 Alkaline electrolysis-future prospects -- References -- 6 - PEM water electrolysis -- 6.1 General principle and cell layout -- 6.1.1 Introduction -- 6.1.2 Cell layout -- 6.2 Cell and stack materials.
6.2.1 Electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction -- 6.2.2 Membrane -- 6.2.3 Bipolar plates -- 6.2.4 Current collectors -- 6.3 Performance on cell and system level -- 6.4 Degradation mechanisms and lifetime -- 6.4.1 Bipolar plates and current collectors -- 6.4.2 Catalysts and electrodes -- 6.5 Electrolyte -- 6.6 System aspects and operational experience -- 6.7 System configuration and design -- 6.8 Modeling of polymer electrolyte membrane or proton exchange membrane electrolyzers -- 6.9 Material level -- 6.9.1 Modeling of the oxygen evolution reaction mechanism -- 6.9.2 Conductivity of membrane -- 6.10 Cell level -- 6.10.1 Semiempirical modeling -- 6.10.2 Mechanistic multiphase modeling -- 6.11 Stack and system level -- 6.11.1 Stack modeling -- 6.11.2 System modeling combined with renewable intermittent energy sources -- 6.12 Cost reduction potential of polymer electrolyte membrane or proton exchange membrane electrolyzers -- 6.12.1 Polymer electrolyte membrane or proton exchange membrane electrolyzer cost development -- 6.13 Cost breakdown -- 6.14 Main actors and highlights of recent years -- 6.15 Outlook and new concepts -- References -- 7 - High-temperature steam electrolysis -- 7.1 Introduction and general principle -- 7.2 Architecture of solid oxide cells -- 7.3 Cell materials -- 7.3.1 Electrolyte -- 7.3.2 Hydrogen electrode -- 7.3.3 Oxygen electrode -- 7.3.4 Manufacturing -- 7.4 Stack components and designs -- 7.4.1 Interconnect materials and coatings -- 7.4.2 Sealing materials -- 7.5 Cell performance -- 7.5.1 Introduction: impact of SOFC/SOEC reversibility &amp -- limits of reversibility -- 7.5.2 Testing set-up -- 7.5.3 Performance -- 7.5.3.1 Cathode supported cells -- 7.5.3.2 Electrolyte supported cells -- 7.5.4 Durability.
7.5.4.1 Why durability testing on cell &amp -- short stack level? -- 7.5.4.2 Hydrogen electrode-supported cells -- 7.5.4.2.1 Long-term tests -- 7.5.4.2.2 Degradation of the Ni/YSZ H 2 electrode at an elevated current density -- 7.5.4.2.3 Electrode-optimization approaches (microstructure, infiltration) -- 7.5.4.3 Electrolyte supported cells -- 7.5.4.3.1 Long-term tests -- 7.5.4.3.2 Degradation issues -- 7.5.4.3.3 Constant voltage/efficiency operation via temperature adjustment -- 7.5.4.4 Reversible operation -- 7.5.4.4.1 Power variation/operation with current switching -- 7.6 Stack performance -- 7.6.1 Introduction -- 7.6.2 Testing set-up -- 7.6.3 Performance and durability -- 7.6.3.1 Stacks using hydrogen electrode-supported cells -- 7.6.3.2 Stacks using electrolyte supported cells -- 7.6.4 Cycling modes and pressurized operation -- 7.7 Structural analysis of cells and stacks -- 7.7.1 Classical characterization techniques -- 7.7.1.1 Imaging with scanning electron microscopy and transmission electron microscopy -- 7.7.2 Advanced imaging with synchrotron radiation -- 7.7.2.1 Nanoscale X-ray fluorescence 2D mapping -- 7.7.2.2 3D reconstruction using micro and nano X-ray tomography -- 7.8 High temperature steam electrolyzer system -- 7.8.1 Key parameters indicators -- 7.8.2 Balance of plant and system design -- 7.9 From cell to system cost analysis -- 7.10 Summary and outlook on future development -- References -- 8 - Chlor-alkali electrolysis -- 8.1 Introduction -- 8.2 Brief history of the chlor-alkali industry -- 8.3 Overview of chlor-alkali technologies -- 8.3.1 Diaphragm cell [ 2 , 3 ] -- 8.3.2 Mercury cell [ 2 , 3 ] -- 8.3.3 Membrane cell [2-4] -- 8.4 Materials and electrochemistry of a membrane cell -- 8.4.1 Membranes -- 8.4.2 Anodes -- 8.4.3 Cathodes -- 8.4.4 Cell design and operation.
8.5 System configuration of membrane cell.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Collection Call number Status Notes Date due Barcode
E-Book E-Book Merkez Kütüphane
Merkez Kütüphane
E-Kitap Koleksiyonu TP359.H8 E443 2022EBK (Browse shelf) Geçerli değil-e-Kitap / Not applicable-e-Book MBN EBK01176

Includes bibliographical references and index.

Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - The importance of water electrolysis for our future energy system -- 1.1 Introduction -- 1.1.1 Chapter structure -- 1.1.2 Hydrogen and water electrolysis -- 1.1.3 Hydrogen production and use today -- 1.1.4 Does hydrogen have a color? -- 1.2 Motivation and key drivers for hydrogen in the future energy system -- 1.2.1 Historic interest in hydrogen: defossilization -- 1.2.2 The contemporary drive for hydrogen: decarbonization -- 1.2.2.1 The Paris agreement and the remaining CO 2 budget -- 1.2.2.2 Implications of "net zero" for the current energy system -- 1.2.2.3 The toolbox for building a net-zero energy system -- 1.2.3 Net zero versus defossilization versus 100% renewable energy supply -- 1.2.4 Regional drivers for hydrogen -- 1.3 Hydrogen in global energy future scenarios -- 1.3.1 Published energy scenarios with detail on hydrogen -- 1.3.2 Different net-zero strategies and what they mean for hydrogen -- 1.3.2.1 Selection of scenarios for detailed comparison -- 1.3.2.2 Overview and background of the selected scenarios -- 1.3.2.3 Characterization of net-zero strategies and implications for hydrogen -- 1.4 Water electrolysis in a net-zero future -- 1.4.1 Hydrogen by production pathway in net-zero scenarios -- 1.4.2 Required water electrolyzer capacity in net-zero scenarios -- 1.4.3 Are there limitations to solar and wind deployment? -- 1.4.4 Green versus blue hydrogen-renewable versus fossil energy -- 1.5 Summary and outlook to 2030 -- 1.5.1 Unprecedented drive for water electrolysis as a transition enabler -- 1.5.2 Best use of green hydrogen from early water electrolyzer projects -- 1.5.3 Deployment of water electrolysis in the 2030 timeframe -- 1.5.4 Green hydrogen as an accelerator of the energy transition.

Abbreviations, terminology, units and conversions -- -- References -- 2 - Fundamentals of water electrolysis -- 2.1 Introduction -- 2.1.1 Brief historical perspective -- 2.1.2 The machinery -- 2.2 The water electrolysis cell -- 2.2.1 Cell design -- 2.2.2 Role of electrolyte pH -- 2.2.3 Different electrolysis cells -- 2.3 Thermodynamics -- 2.3.1 Thermochemistry - ideality -- 2.3.1.1 Effect of operating temperature -- 2.3.1.2 Effect of operating pressure -- 2.3.2 Thermochemistry - non-ideality -- 2.3.2.1 Effect of water vapor -- 2.3.2.2 Nonideality due to pressure -- 2.3.3 Electrochemical thermodynamics -- 2.4 Non-equilibrium thermodynamics -- 2.4.1 Review of dissipation sources -- 2.4.2 The hydrogen evolution reaction (HER) -- 2.4.2.1 Acidic aqueous media -- 2.4.2.2 Alkaline media -- 2.4.2.3 Solid oxide -- 2.4.3 The oxygen evolution reaction (OER) -- 2.4.3.1 Acidic media -- 2.4.3.2 Alkaline media -- 2.4.3.3 Solid oxide -- 2.4.4 I-V curves -- 2.5 Cell efficiency -- 2.5.1 Energy efficiency -- 2.5.2 Process energy efficiency -- 2.5.3 Coulombic efficiency -- 2.6 Conclusions -- Glossary -- References -- 3 - Thermochemical hydrogen processes -- 3.1 Introduction -- 3.2 Metal oxide water splitting cycles -- 3.2.1 Generic metal-oxide cycle -- 3.2.2 Cerium oxide cycle -- 3.2.3 Nonstoichiometric perovskite-based solar thermochemical cycles -- 3.3 Copper-chlorine process -- 3.4 Sulfur-based process -- 3.4.1 Sulfur-iodine cycle -- 3.4.2 Hybrid sulfur cycle -- 3.5 Conclusions and outlook -- References -- 4 - The history of water electrolysis from its beginnings to the present -- 4.1 Introduction -- 4.2 First developments -- 4.2.1 Electrochemical fundamentals -- 4.2.2 Direct current generators -- 4.2.3 Drive principles -- 4.3 Preindustrial time up to about 1900 -- 4.3.1 Water electrolysis.

4.3.2 Chlor-alkali electrolysis -- 4.3.2.1 Diaphragm process -- 4.3.2.2 Mercury process -- 4.4 Alkaline water electrolysis in the 20th century -- 4.4.1 Industrial commercialization until 1950 -- 4.4.2 Large industrial deployment until 1980 -- 4.4.3 Advanced alkaline water electrolysis -- 4.5 History of polymer electrolyte membrane water electrolysis -- 4.5.1 Military and space application as early driver -- 4.5.2 Beyond niche applications -- 4.5.2.1 United States -- 4.5.2.2 Japan -- 4.5.2.3 Europe -- 4.6 History of high-temperature steam electrolysis -- 4.6.1 Pioneering high-temperature fuel cells -- 4.6.2 Progress in solid oxide electrolysis cells -- 4.7 Recent past with focus on new markets for renewables energies -- 4.7.1 Early German research projects since 1980 -- 4.7.2 Selected international research projects until the early 2000s -- References -- 5 - Alkaline electrolysis-status and prospects -- 5.1 Brief history of water electrolysis -- 5.2 Physical and chemical principles of electrolysis -- 5.2.1 Main technologies of water electrolysis -- 5.2.2 Efficiency of an electrolyzer -- 5.3 Principle of operation of an alkaline electrolyzer -- 5.4 Technical concepts of electrolysis-status and prospects -- 5.4.1 Key performance parameters -- 5.4.2 Technical concepts of alkaline electrolysis-past and today -- 5.5 Materials -- 5.5.1 Separators -- 5.5.2 Electrodes -- 5.5.3 Operating conditions -- 5.6 Degradation effects in alkaline electrolyzers -- 5.7 Anion exchange membrane water electrolysis -- 5.8 Description of technical plants -- 5.8.1 Components of an alkaline electrolysis plant -- 5.9 Alkaline electrolysis-future prospects -- References -- 6 - PEM water electrolysis -- 6.1 General principle and cell layout -- 6.1.1 Introduction -- 6.1.2 Cell layout -- 6.2 Cell and stack materials.

6.2.1 Electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction -- 6.2.2 Membrane -- 6.2.3 Bipolar plates -- 6.2.4 Current collectors -- 6.3 Performance on cell and system level -- 6.4 Degradation mechanisms and lifetime -- 6.4.1 Bipolar plates and current collectors -- 6.4.2 Catalysts and electrodes -- 6.5 Electrolyte -- 6.6 System aspects and operational experience -- 6.7 System configuration and design -- 6.8 Modeling of polymer electrolyte membrane or proton exchange membrane electrolyzers -- 6.9 Material level -- 6.9.1 Modeling of the oxygen evolution reaction mechanism -- 6.9.2 Conductivity of membrane -- 6.10 Cell level -- 6.10.1 Semiempirical modeling -- 6.10.2 Mechanistic multiphase modeling -- 6.11 Stack and system level -- 6.11.1 Stack modeling -- 6.11.2 System modeling combined with renewable intermittent energy sources -- 6.12 Cost reduction potential of polymer electrolyte membrane or proton exchange membrane electrolyzers -- 6.12.1 Polymer electrolyte membrane or proton exchange membrane electrolyzer cost development -- 6.13 Cost breakdown -- 6.14 Main actors and highlights of recent years -- 6.15 Outlook and new concepts -- References -- 7 - High-temperature steam electrolysis -- 7.1 Introduction and general principle -- 7.2 Architecture of solid oxide cells -- 7.3 Cell materials -- 7.3.1 Electrolyte -- 7.3.2 Hydrogen electrode -- 7.3.3 Oxygen electrode -- 7.3.4 Manufacturing -- 7.4 Stack components and designs -- 7.4.1 Interconnect materials and coatings -- 7.4.2 Sealing materials -- 7.5 Cell performance -- 7.5.1 Introduction: impact of SOFC/SOEC reversibility &amp -- limits of reversibility -- 7.5.2 Testing set-up -- 7.5.3 Performance -- 7.5.3.1 Cathode supported cells -- 7.5.3.2 Electrolyte supported cells -- 7.5.4 Durability.

7.5.4.1 Why durability testing on cell &amp -- short stack level? -- 7.5.4.2 Hydrogen electrode-supported cells -- 7.5.4.2.1 Long-term tests -- 7.5.4.2.2 Degradation of the Ni/YSZ H 2 electrode at an elevated current density -- 7.5.4.2.3 Electrode-optimization approaches (microstructure, infiltration) -- 7.5.4.3 Electrolyte supported cells -- 7.5.4.3.1 Long-term tests -- 7.5.4.3.2 Degradation issues -- 7.5.4.3.3 Constant voltage/efficiency operation via temperature adjustment -- 7.5.4.4 Reversible operation -- 7.5.4.4.1 Power variation/operation with current switching -- 7.6 Stack performance -- 7.6.1 Introduction -- 7.6.2 Testing set-up -- 7.6.3 Performance and durability -- 7.6.3.1 Stacks using hydrogen electrode-supported cells -- 7.6.3.2 Stacks using electrolyte supported cells -- 7.6.4 Cycling modes and pressurized operation -- 7.7 Structural analysis of cells and stacks -- 7.7.1 Classical characterization techniques -- 7.7.1.1 Imaging with scanning electron microscopy and transmission electron microscopy -- 7.7.2 Advanced imaging with synchrotron radiation -- 7.7.2.1 Nanoscale X-ray fluorescence 2D mapping -- 7.7.2.2 3D reconstruction using micro and nano X-ray tomography -- 7.8 High temperature steam electrolyzer system -- 7.8.1 Key parameters indicators -- 7.8.2 Balance of plant and system design -- 7.9 From cell to system cost analysis -- 7.10 Summary and outlook on future development -- References -- 8 - Chlor-alkali electrolysis -- 8.1 Introduction -- 8.2 Brief history of the chlor-alkali industry -- 8.3 Overview of chlor-alkali technologies -- 8.3.1 Diaphragm cell [ 2 , 3 ] -- 8.3.2 Mercury cell [ 2 , 3 ] -- 8.3.3 Membrane cell [2-4] -- 8.4 Materials and electrochemistry of a membrane cell -- 8.4.1 Membranes -- 8.4.2 Anodes -- 8.4.3 Cathodes -- 8.4.4 Cell design and operation.

8.5 System configuration of membrane cell.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

to post a comment.
Devinim Yazılım Eğitim Danışmanlık tarafından Koha'nın orjinal sürümü uyarlanarak geliştirilip kurulmuştur.